Dirac operators on Lagrangian submanifolds

نویسنده

  • Nicolas Ginoux
چکیده

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classification: 53C15, 53C27, 53C40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Dirac reduction revisited

The procedure of Dirac reduction of Poisson operators on submanifolds is discussed within a particularly useful special realization of the general Marsden-Ratiu reduction procedure. The Dirac classification of constraints on ’first-class’ constraints and ’second-class’ constraints is reexamined. AMS 2000 Subject Classification: 70H45, 53D17, 70G45

متن کامل

Biharmonic Capacity and the Stability of Minimal Lagrangian Submanifolds

We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...

متن کامل

Dirac Operators, Conformal Transformations and Aspects of Classical Harmonic Analysis

The main thrust of this paper is to investigate the intimate link between the conformal group and singular integral operators, in particular, but not exclusively, operators of Calderón–Zygmund type, together with associated commutators acting on the L spaces of surfaces. Clifford analysis and Dirac operators are the basic tools used to help to unify these themes. These surfaces lie in euclidean...

متن کامل

0 Submanifold Differential Operators in D - Module Theory II

This article is one of a series of papers. For this decade, the Dirac operator on a submanifold has been studied as a restriction of the Dirac operator in n-dimensional euclidean space E n to a surface or a space curve as physical models. These Dirac operators are identified with operators of the Frenet-Serret relation for a space curve case and of the generalized Weierstrass relation for a con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008